Full metadata record
DC FieldValueLanguage
dc.contributor.authorTsai, Yu-Tingen_US
dc.contributor.authorShih, Zen-Chungen_US
dc.date.accessioned2014-12-08T15:23:14Z-
dc.date.available2014-12-08T15:23:14Z-
dc.date.issued2012-05-01en_US
dc.identifier.issn0730-0301en_US
dc.identifier.urihttp://dx.doi.org/19en_US
dc.identifier.urihttp://hdl.handle.net/11536/16316-
dc.description.abstractWith the increasing demands for photo-realistic image synthesis in real time, we propose a sparse multilinear model, which is named K-Clustered Tensor Approximation (K-CTA), to efficiently analyze and approximate large-scale multidimensional visual datasets, so that both storage space and rendering time are substantially reduced. K-CTA not only extends previous work on Clustered Tensor Approximation (CTA) to exploit inter-cluster coherence, but also allows a compact and sparse representation for high-dimensional datasets with just a few low-order factors and reduced multidimensional cluster core tensors. Thus, K-CTA can be regarded as a sparse extension of CTA and a multilinear generalization of sparse representation. Experimental results demonstrate that K-CTA can accurately approximate spatially varying visual datasets, such as bidirectional texture functions, view-dependent occlusion texture functions, and biscale radiance transfer functions for efficient rendering in real-time applications.en_US
dc.language.isoen_USen_US
dc.subjectAlgorithmsen_US
dc.subjectReal-Time renderingen_US
dc.subjectmultidimensional data analysisen_US
dc.subjecttensor approximationen_US
dc.subjectsparse representationen_US
dc.titleK-Clustered Tensor Approximation: A Sparse Multilinear Model for Real-Time Renderingen_US
dc.typeArticleen_US
dc.identifier.doi19en_US
dc.identifier.journalACM TRANSACTIONS ON GRAPHICSen_US
dc.citation.volume31en_US
dc.citation.issue3en_US
dc.citation.epageen_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000304754600002-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000304754600002.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.