完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWu, Chun-Haoen_US
dc.contributor.authorTseng, Yu-Cheeen_US
dc.date.accessioned2014-12-08T15:23:15Z-
dc.date.available2014-12-08T15:23:15Z-
dc.date.issued2012-05-01en_US
dc.identifier.issn1089-7798en_US
dc.identifier.urihttp://hdl.handle.net/11536/16323-
dc.description.abstractHuman body motions usually exhibit a high degree of coherence and correlation in patterns. This allows exploiting spatial correlations of motion data being captured by a body sensor network. Since human bodies are relatively small, earlier work has shown how to compress motion data by allowing a node to overhear at most kappa = 1 node's transmission and exploit the correlation with its own data for data compression. In this work, we consider multi-spatial correlations by extending kappa = 1 to kappa > 1 and constructing a partial-ordering directed acyclic graph (DAG) to represent the compression dependencies among sensor nodes. While a minimum-cost tree for kappa = 1 can be found in polynomial time, we show that finding a minimum-cost DAG is NP-hard even for kappa = 2. We then propose an efficient heuristic and verify its performance by real sensing data.en_US
dc.language.isoen_USen_US
dc.subjectBody sensor networken_US
dc.subjectdata compressionen_US
dc.subjectinertial sensoren_US
dc.subjectpervasive computingen_US
dc.subjectwireless sensor networken_US
dc.titleExploiting Multi-Spatial Correlations of Motion Data in a Body Sensor Networken_US
dc.typeArticleen_US
dc.identifier.journalIEEE COMMUNICATIONS LETTERSen_US
dc.citation.volume16en_US
dc.citation.issue5en_US
dc.citation.epage662en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000304164600025-
dc.citation.woscount2-
顯示於類別:期刊論文


文件中的檔案:

  1. 000304164600025.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。