完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Huan-Yuen_US
dc.contributor.authorSu, Jun-Mingen_US
dc.contributor.authorTseng, Shian-Shyongen_US
dc.date.accessioned2014-12-08T15:23:23Z-
dc.date.available2014-12-08T15:23:23Z-
dc.date.issued2012en_US
dc.identifier.issn1024-123Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/16376-
dc.identifier.urihttp://dx.doi.org/820190en_US
dc.description.abstractFor test-sheet composition systems, it is important to adaptively compose test sheets with diverse conceptual scopes, discrimination and difficulty degrees to meet various assessment requirements during real learning situations. Computation time and item exposure rate also influence performance and item bank security. Therefore, this study proposes an Adaptive Test Sheet Generation (ATSG) mechanism, where a Candidate Item Selection Strategy adaptively determines candidate test items and conceptual granularities according to desired conceptual scopes, and an Aggregate Objective Function applies Genetic Algorithm (GA) to figure out the approximate solution of mixed integer programming problem for the test-sheet composition. Experimental results show that the ATSG mechanism can efficiently, precisely generate test sheets to meet the various assessment requirements than existing ones. Furthermore, according to experimental finding, Fractal Time Series approach can be applied to analyze the self-similarity characteristics of GA's fitness scores for improving the quality of the test-sheet composition in the near future.en_US
dc.language.isoen_USen_US
dc.titleAn Adaptive Test Sheet Generation Mechanism Using Genetic Algorithmen_US
dc.typeArticleen_US
dc.identifier.doi820190en_US
dc.identifier.journalMATHEMATICAL PROBLEMS IN ENGINEERINGen_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000304973100001-
dc.citation.woscount2-
顯示於類別:期刊論文


文件中的檔案:

  1. 000304973100001.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。