標題: Convergence time for the linkage learning genetic algorithm
作者: Chen, YP
Goldberg, DE
資訊工程學系
Department of Computer Science
關鍵字: genetic algorithms;genetic linkage;linkage learning;linkage learning genetic algorithm;sequential behavior;tightness time;convergence time
公開日期: 1-九月-2005
摘要: This paper identifies the sequential behavior of the linkage learning genetic algorithm, introduces the tightness time model for a single building block, and develops the connection between the sequential behavior and the tightness time model. By integrating the first-building-block model based on the sequential behavior, the tightness time model, and the connection between these two models, a convergence time model is constructed and empirically verified. The proposed convergence time model explains the exponentially growing time required by the linkage learning genetic algorithm when solving uniformly scaled problems.
URI: http://dx.doi.org/10.1162/1063656054794806
http://hdl.handle.net/11536/13352
ISSN: 1063-6560
DOI: 10.1162/1063656054794806
期刊: EVOLUTIONARY COMPUTATION
Volume: 13
Issue: 3
起始頁: 279
結束頁: 302
顯示於類別:期刊論文


文件中的檔案:

  1. 000231590200001.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。