完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChang, Yue-Shanen_US
dc.contributor.authorSheu, Ruey-Kaien_US
dc.contributor.authorYuan, Shyan-Mingen_US
dc.contributor.authorHsu, Jyn-Jieen_US
dc.date.accessioned2014-12-08T15:23:46Z-
dc.date.available2014-12-08T15:23:46Z-
dc.date.issued2012-09-01en_US
dc.identifier.issn1387-3326en_US
dc.identifier.urihttp://hdl.handle.net/11536/16582-
dc.description.abstract"The market leaders of Cloud Computing try to leverage the parallel-processing capability of GPUs to provide more economic services than traditions. As the cornerstone of enterprise applications, database systems are of the highest priority to be improved for the performance and design complexity reduction. It is the purpose of this paper to design an in-memory database, called CUDADB, to scale up the performance of the database system on GPU with CUDA. The details of implementation and algorithms are presented, and the experiences of GPU-enabled CUDA database operations are also shared in this paper. For performance evaluation purposes, SQLite is used as the comparison target. From the experimental results, CUDADB performs better than SQLite for most test cases. And, surprisingly, the CUDADB performance is independent from the number of data records in a query result set. The CUDADB performance is a static proportion of the total number of data records in the target table. Finally, this paper comes out a concept of turning point that represents the difference ratio between CUDADB and SQLite."en_US
dc.language.isoen_USen_US
dc.subjectGPUen_US
dc.subjectCUDAen_US
dc.subjectSQLiteen_US
dc.subjectIn-Memory Databaseen_US
dc.titleScaling database performance on GPUsen_US
dc.typeArticleen_US
dc.identifier.journalINFORMATION SYSTEMS FRONTIERSen_US
dc.citation.volume14en_US
dc.citation.issue4en_US
dc.citation.epage909en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000307276000006-
dc.citation.woscount3-
顯示於類別:期刊論文


文件中的檔案:

  1. 000307276000006.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。