完整後設資料紀錄
DC 欄位語言
dc.contributor.authorTong, Lee-Ingen_US
dc.contributor.authorChang, Chih-Weien_US
dc.contributor.authorJin, Shin-Enen_US
dc.contributor.authorSaminathan, R.en_US
dc.date.accessioned2014-12-08T15:23:47Z-
dc.date.available2014-12-08T15:23:47Z-
dc.date.issued2012-09-01en_US
dc.identifier.issn1352-2310en_US
dc.identifier.urihttp://hdl.handle.net/11536/16591-
dc.description.abstract"Greenhouse gas (GHG) emissions have exacerbated global warming, and consequently are the focus of worldwide reduction efforts. Reducing emissions involves accurately estimating GHG emissions and the uncertainty associated with such estimates. The uncertainty of GHG emission estimates is often assessed using the 95% confidence interval. Given a small sample size and non-normal distribution of the underlying population, the uncertainty estimate obtained using the 95% confidence interval may lead to significant bias. Bootstrap confidence interval is an effective means of reducing bias. This work presents a procedure for estimating the uncertainty of GHG emission estimation using bootstrap confidence intervals. Numerical simulation is performed for GHG emission estimates under three distributions (namely normal, log-normal and uniform) to find the 95% confidence intervals and bootstrap confidence intervals. Finally, the accuracy and sensitivity of the uncertainty of various interval estimations are examined by comparing the coverage performance, interval mean and interval standard deviation. Simulation results indicate that the bootstrap intervals are more applicable than the 95% confidence interval given non-normal dataset and small sample size. Moreover, when sample size n is less than 30, the bootstrap confidence interval has a smaller interval length with a smaller deviation than that of the classical 95% confidence interval regardless of whether the data distribution is normal or non-normal. This study recommends a sample size greater than or equal to 9 for estimating the uncertainty of emission estimates. When the sample size n exceeds 30, either the normality-based 95% confidence interval or bootstrap confidence intervals may be used regardless of whether the data distribution is normal or non-normal. A case study of carbon stock from Taiwan demonstrates the feasibility of the proposed procedure. (C) 2012 Elsevier Ltd. All rights reserved."en_US
dc.language.isoen_USen_US
dc.subjectBootstrap confidence intervalsen_US
dc.subjectBootstrap simulationen_US
dc.subjectGreenhouse gas emissionsen_US
dc.subjectUncertaintyen_US
dc.titleQuantifying uncertainty of emission estimates in National Greenhouse Gas Inventories using bootstrap confidence intervalsen_US
dc.typeArticleen_US
dc.identifier.journalATMOSPHERIC ENVIRONMENTen_US
dc.citation.volume56en_US
dc.citation.issueen_US
dc.citation.epage80en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department工業工程與管理學系zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentDepartment of Industrial Engineering and Managementen_US
dc.identifier.wosnumberWOS:000306347900011-
dc.citation.woscount0-
顯示於類別:期刊論文


文件中的檔案:

  1. 000306347900011.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。