完整後設資料紀錄
DC 欄位語言
dc.contributor.authorGuo, Chun-Huaen_US
dc.contributor.authorKuo, Yueh-Chengen_US
dc.contributor.authorLin, Wen-Weien_US
dc.date.accessioned2014-12-08T15:24:08Z-
dc.date.available2014-12-08T15:24:08Z-
dc.date.issued2012-11-01en_US
dc.identifier.issn0377-0427en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.cam.2012.05.012en_US
dc.identifier.urihttp://hdl.handle.net/11536/16801-
dc.description.abstractThe Green's function approach for treating quantum transport in nano devices requires the solution of nonlinear matrix equations of the form X + (C* + i eta D*)X-1(C + i eta D) = R+i eta P. where R and P are Hermitian, P + lambda D* + lambda D-1 is positive definite for all lambda on the unit circle, and eta -> 0(+). For each fixed eta > 0, we show that the required solution is the unique stabilizing solution X-eta. Then X-center dot = lim(eta -> 0+) X-eta is a particular weakly stabilizing solution of the matrix equation X + C*X-1C = R. In nano applications, the matrices R and C are dependent on a parameter, which is the system energy E. In practice one is mainly interested in those values of g for which the equation X + C*X-1C = R has no stabilizing solutions or, equivalently, the quadratic matrix polynomial P(lambda) = lambda C-2* - lambda R + C has eigenvalues on the unit circle. We point out that a doubling algorithm can be used to compute X-eta efficiently even for very small values eta, thus providing good approximations to X-*. We also explain how the solution X-* can be computed directly using subspace methods such as the QZ algorithm by determining which unimodular eigenvalues of P(lambda) should be included in the computation. In some applications the matrices C, D, R, P have very special sparsity structures. We show how these special structures can be exploited to drastically reduce the complexity of the doubling algorithm for computing X-eta. (C) 2012 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectNonlinear matrix equationen_US
dc.subjectWeakly stabilizing solutionen_US
dc.subjectStructure-preserving algorithmen_US
dc.subjectGreen's functionen_US
dc.titleNumerical solution of nonlinear matrix equations arising from Green's function calculations in nano researchen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.cam.2012.05.012en_US
dc.identifier.journalJOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICSen_US
dc.citation.volume236en_US
dc.citation.issue17en_US
dc.citation.spage4166en_US
dc.citation.epage4180en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000307027700002-
dc.citation.woscount3-
顯示於類別:期刊論文


文件中的檔案:

  1. 000307027700002.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。