完整後設資料紀錄
DC 欄位語言
dc.contributor.authorFang, Shih-Weien_US
dc.contributor.authorWong, Sai-Keungen_US
dc.date.accessioned2014-12-08T15:24:13Z-
dc.date.available2014-12-08T15:24:13Z-
dc.date.issued2012-10-01en_US
dc.identifier.issn0950-7051en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.knosys.2012.02.017en_US
dc.identifier.urihttp://hdl.handle.net/11536/16820-
dc.description.abstractGame balancing affects the gaming experience of players in video-games. In this paper, we propose a novel system, team ability balancing system (TABS), which is developed for automatically evaluating the performance of two teams in a role-playing video game. TABS can be used for assisting game designers to improve team balance. In TABS, artificial neural network (ANN) controllers learn to play the game in an unsupervised manner and they are evolved by using particle swarm optimization. The ANN controllers control characters of the two teams to fight with each other. An evaluation method is proposed to evaluate the performance of the two teams. Based on the evaluation results, the game designers can adjust the abilities of the characters so as to achieve team balance. We demonstrate TABS for our in-house MagePowerCraft game in which each team consists of up to three characters. (C) 2012 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectArtificial neural networken_US
dc.subjectParticle swarm optimizationen_US
dc.subjectGame balanceen_US
dc.subjectRole-playing gameen_US
dc.subjectTeam balancing systemen_US
dc.titleGame team balancing by using particle swarm optimizationen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.knosys.2012.02.017en_US
dc.identifier.journalKNOWLEDGE-BASED SYSTEMSen_US
dc.citation.volume34en_US
dc.citation.issueen_US
dc.citation.spage91en_US
dc.citation.epage96en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000309093000011-
dc.citation.woscount2-
顯示於類別:期刊論文


文件中的檔案:

  1. 000309093000011.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。