完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHsieh, Ji-Lungen_US
dc.contributor.authorSun, Chuen-Tsaien_US
dc.contributor.authorHuang, Chung-Yuanen_US
dc.date.accessioned2014-12-08T15:24:45Z-
dc.date.available2014-12-08T15:24:45Z-
dc.date.issued2006en_US
dc.identifier.isbn978-0-7803-9487-2en_US
dc.identifier.urihttp://hdl.handle.net/11536/17193-
dc.description.abstractThe authors describe a recommender model that uses intermediate agents to evaluate a large body of subjective data according to a set of rules and make recommendations to users. After scoring recommended items, agents adapt their own selection rules via interactive evolutionary computing to fit user tastes, even when user preferences undergo a rapid change. The model can be applied to such tasks as critiquing large numbers of music, image, or written compositions. In this paper we use musical selections to illustrate how agents make recommendations and report the results of several experiments designed to test the model's ability to adapt to rapidly changing conditions yet still make appropriate decisions and recommendations.en_US
dc.language.isoen_USen_US
dc.titleUsing evolving agents to critique subjective data: Recommending musicen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6en_US
dc.citation.spage406en_US
dc.citation.epage413en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000245414200055-
顯示於類別:會議論文