Full metadata record
DC FieldValueLanguage
dc.contributor.authorJou, Yow-Jenen_US
dc.contributor.authorCh, Hsun-Jungen_US
dc.contributor.authorLan, Chien-Lunen_US
dc.contributor.authorHsu, Chia-Chunen_US
dc.date.accessioned2014-12-08T15:25:02Z-
dc.date.available2014-12-08T15:25:02Z-
dc.date.issued2006en_US
dc.identifier.isbn978-90-04-15542-8en_US
dc.identifier.issn1573-4196en_US
dc.identifier.urihttp://hdl.handle.net/11536/17399-
dc.description.abstractAn effective method of O-D estimation by the state-space model has been introduced by Jon. Coupled with Gibbs sampler and Kalman filter, the state-space model can generated precious O-D matrices without any prior information while other studies assume that the transition matrix is known or at least approximately known. The Gibbs sampler, a particular type of Markov Chain Monte Carlo method, is one of the iterative simulation methods. To monitor of convergence of this iterative simulation, a parallel chain technique is implemented in this paper. By the numerical example, the convergence of the different chains would be clearly pointed out. The comparison of simulation and real data also shows that satisfying results can be obtained by the model.en_US
dc.language.isoen_USen_US
dc.subjectorigin-destinationen_US
dc.subjectstate space modelen_US
dc.subjectgibbs sampleren_US
dc.subjectKalman filteren_US
dc.subjectparallel chainen_US
dc.titleParallel chain convergence of time dependent origin-destination matrices with gibbs sampleren_US
dc.typeProceedings Paperen_US
dc.identifier.journalRECENT PROGRESS IN COMPUTATIONAL SCIENCES AND ENGINEERING, VOLS 7A AND 7Ben_US
dc.citation.volume7A-Ben_US
dc.citation.spage834en_US
dc.citation.epage837en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000254378800191-
Appears in Collections:Conferences Paper