Full metadata record
DC FieldValueLanguage
dc.contributor.authorHu, Jwu-Shengen_US
dc.contributor.authorSu, Tzung-Minen_US
dc.contributor.authorHuang, Heng-Chiaen_US
dc.contributor.authorLin, Pei-Chingen_US
dc.date.accessioned2014-12-08T15:25:05Z-
dc.date.available2014-12-08T15:25:05Z-
dc.date.issued2006en_US
dc.identifier.isbn978-1-4244-0310-3en_US
dc.identifier.urihttp://hdl.handle.net/11536/17471-
dc.identifier.urihttp://dx.doi.org/10.1109/COASE.2006.326953en_US
dc.description.abstractThis work describes a vision-based approach to recognize scene in the indoor environment. The proposed method represents each scene captured by a Pan-Tilt-Zoom (PTZ) camera with a blob model using spatial probabilistic modeling. Although the details of the scene covered by the camera are lost, this model is efficient in memorizing the scene characteristics and is robust against image distortions. Furthermore, multi-view recognition is studied to increase the precision of scene cognition via a partial knowledge of the scene. The images captured in the same location with different view angles are collected to extract the scene characteristics in order to decrease the memory storage size for each location. The effectiveness of the method is demonstrated by experiments in an unstructured indoor environment.en_US
dc.language.isoen_USen_US
dc.subjectcharacteristic viewen_US
dc.subjectGaussian mixture modelen_US
dc.subjectprobabilistic modelingen_US
dc.subjectscene cognitionen_US
dc.titleVision-based indoor scene cognition using a spatial probabilistic modeling methoden_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/COASE.2006.326953en_US
dc.identifier.journal2006 IEEE International Conference on Automation Science and Engineering, Vols 1 and 2en_US
dc.citation.spage620en_US
dc.citation.epage625en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000246987000108-
Appears in Collections:Conferences Paper


Files in This Item:

  1. 000246987000108.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.