Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Yen-Chihen_US
dc.contributor.authorSu, Yu T.en_US
dc.date.accessioned2014-12-08T15:25:07Z-
dc.date.available2014-12-08T15:25:07Z-
dc.date.issued2006en_US
dc.identifier.isbn978-1-4244-0505-3en_US
dc.identifier.urihttp://hdl.handle.net/11536/17487-
dc.identifier.urihttp://dx.doi.org/10.1109/ISIT.2006.261734en_US
dc.description.abstractIn this paper, we propose two simulation based maximum likelihood (ML) methods to estimate the direction of arrival (DOA) by a novel combination of the Cross-Entropy (CE) method and the polynomial parameterization scheme. The CE method is an efficient stochastic approximation method for solving both discrete and continuous optimization problems. We bridge the ML approach and the stochastic search algorithm by properly randomizing the desired parameters. Numerical results show that the proposed CE-based algorithms yield highly accurate DOA estimation with fast convergence rate while requiring only linear processing complexity. Compared with the conventional iterative quadratic maximization likelihood (IQML) method, the proposed algorithms can alleviate the error propagation effect in low signal to noise ratio (SNR) region and asymptotically approach the Cramer-Rao bound in high SNR region.en_US
dc.language.isoen_USen_US
dc.titleMaximum likelihood DOA estimation based on the cross-entropy methoden_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/ISIT.2006.261734en_US
dc.identifier.journal2006 IEEE International Symposium on Information Theory, Vols 1-6, Proceedingsen_US
dc.citation.spage851en_US
dc.citation.epage855en_US
dc.contributor.department電信工程研究所zh_TW
dc.contributor.departmentInstitute of Communications Engineeringen_US
dc.identifier.wosnumberWOS:000245289701076-
Appears in Collections:Conferences Paper


Files in This Item:

  1. 000245289701076.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.