完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, PZen_US
dc.contributor.authorWang, WYen_US
dc.contributor.authorLee, TTen_US
dc.contributor.authorChen, GMen_US
dc.date.accessioned2014-12-08T15:25:12Z-
dc.date.available2014-12-08T15:25:12Z-
dc.date.issued2005en_US
dc.identifier.isbn0-7803-9298-1en_US
dc.identifier.issn1062-922Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/17585-
dc.description.abstractIn this paper, a novel online B-spline membership function (BMF) fuzzy-neural sliding mode controller trained by an adaptive bound reduced-form genetic algorithm (ABRGA) is developed to guarantee robust stability and tracking performance for robot manipulators with uncertainties and external disturbances. The general sliding manifold is used to construct the sliding surface and reduce the chattering of the control signal, which can be nonlinear or time varying. For the purpose of identification, the proposed BMF fuzzy-neural network trained by the ABRGA approximates the regressor of the manipulator. An adaptive bound algorithm is used to aid and speed up the searching speed of the RGA. Simulation results show that the proposed on-line ABRGA-based BMF fuzzy-neural sliding mode controller is effective and yields superior tracking performance for robot manipulators.en_US
dc.language.isoen_USen_US
dc.subjectBMF fuzzy-neural sliding mode controllersen_US
dc.subjectonline adaptive bound reduced-form genetic algorithmsen_US
dc.subjectrobot manipulatorsen_US
dc.titleOn-line genetic fuzzy-neural sliding mode controller designen_US
dc.typeProceedings Paperen_US
dc.identifier.journalINTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOL 1-4, PROCEEDINGSen_US
dc.citation.spage245en_US
dc.citation.epage250en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000235210800041-
顯示於類別:會議論文