完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Yang, Shih-Hung | en_US |
dc.contributor.author | Chen, Yon-Ping | en_US |
dc.date.accessioned | 2014-12-08T15:25:17Z | - |
dc.date.available | 2014-12-08T15:25:17Z | - |
dc.date.issued | 2009 | en_US |
dc.identifier.isbn | 978-1-4244-2852-6 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/17669 | - |
dc.identifier.uri | http://dx.doi.org/10.1109/AIM.2009.5229929 | en_US |
dc.description.abstract | This paper presents the design issues of two intelligent forecasting systems, feedforward-neural-network-aided grey model (FNAGM) and Elman-network-aided grey model (ENAGM). Both he FNAGM and ENAGM combine a first-order single variable grey model (GM(1,1)) and a neural network (NN). The GM(1,1) is adopted to predict signal, and the feedforward NN and the Elman network in the FNAGM and ENAGM respectively are used to learn the prediction error of the GM(1,1). Simulation results demonstrate that the intelligent forecasting systems with on-line learning can improve the prediction of the GM(1,1) and can be implemented in real-time prediction. | en_US |
dc.language.iso | en_US | en_US |
dc.title | Intelligent Forecasting System Based on Grey Model and Neural Network | en_US |
dc.type | Proceedings Paper | en_US |
dc.identifier.doi | 10.1109/AIM.2009.5229929 | en_US |
dc.identifier.journal | 2009 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS, VOLS 1-3 | en_US |
dc.citation.spage | 699 | en_US |
dc.citation.epage | 704 | en_US |
dc.contributor.department | 電控工程研究所 | zh_TW |
dc.contributor.department | Institute of Electrical and Control Engineering | en_US |
dc.identifier.wosnumber | WOS:000277062800119 | - |
顯示於類別: | 會議論文 |