完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLo, Wen-Huien_US
dc.contributor.authorChen, Sin-Horngen_US
dc.date.accessioned2014-12-08T15:25:23Z-
dc.date.available2014-12-08T15:25:23Z-
dc.date.issued2009en_US
dc.identifier.isbn978-1-4244-3592-0en_US
dc.identifier.urihttp://hdl.handle.net/11536/17759-
dc.identifier.urihttp://dx.doi.org/10.1109/AMUEM.2009.5207602en_US
dc.description.abstractThe mean value estimation for the output quantity of combined random variables is one of the major issues in measurement. In this paper, a new quantile-based maximum likelihood estimation (QMLE) method for mean value estimation is proposed. It fuses the concept of both empirical and symmetric quantile to incorporate the order statistics into the QMLE. Unlike Sample mean derived basing only on the maximum likelihood criterion, the QMLE also considers MMSE defined using the quasi symmetric quantiles (QSQ), i.e., the first- and last-order samples. Simulation results confirm that the proposed QMLE mean estimator outperforms the conventional Sample mean estimator. This work also gives a looking-up table for the refinement corresponding to the QSQ adjustments.en_US
dc.language.isoen_USen_US
dc.subjectSample meanen_US
dc.subjectcentral limit theoremen_US
dc.subjectmaximum likelihood estimationen_US
dc.subjectquantileen_US
dc.subjectcombined quantitiesen_US
dc.titleThe Mean Estimation of the Combined Quantities by the Asymptotic Minimax Optimizationen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/AMUEM.2009.5207602en_US
dc.identifier.journal2009 IEEE INTERNATIONAL WORKSHOP ON ADVANCED METHODS FOR UNCERTAINTY ESTIMATION IN MEASUREMENTen_US
dc.citation.spage63en_US
dc.citation.epage68en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000274329100013-
顯示於類別:會議論文


文件中的檔案:

  1. 000274329100013.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。