Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, CCen_US
dc.contributor.authorSong, KTen_US
dc.date.accessioned2014-12-08T15:01:18Z-
dc.date.available2014-12-08T15:01:18Z-
dc.date.issued1997-12-01en_US
dc.identifier.issn1042-296Xen_US
dc.identifier.urihttp://dx.doi.org/10.1109/70.650165en_US
dc.identifier.urihttp://hdl.handle.net/11536/177-
dc.description.abstractThe problem of navigating a mobile robot among moving obstacles is usually solved on the condition of knowing the velocity of obstacles. However, it is difficult to provide such information to a robot in real time. In this paper, we present an environment predictor that provides an estimate of future environment configuration by fusing multisensor data in real time. The predictor is implemented by an artificial neural network (ANN) trained using a relative-error-backpropagation (REBP) algorithm. The REBP algorithm enables the ANN to provide output data with a minimum relative error, which is better than conventional backpropagation (BP) algorithms in this prediction application. The mobile robot can, therefore, respond to anticipated changes in the environment. The performance is verified by prediction simulation and navigation experiments.en_US
dc.language.isoen_USen_US
dc.subjectartificial neural networksen_US
dc.subjectenvironment predictionen_US
dc.subjectmobile robotsen_US
dc.subjectmoving obstaclesen_US
dc.subjecttraining algorithmen_US
dc.titleEnvironment prediction for a mobile robot in a dynamic environmenten_US
dc.typeArticleen_US
dc.identifier.doi10.1109/70.650165en_US
dc.identifier.journalIEEE TRANSACTIONS ON ROBOTICS AND AUTOMATIONen_US
dc.citation.volume13en_US
dc.citation.issue6en_US
dc.citation.spage862en_US
dc.citation.epage872en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
Appears in Collections:Articles


Files in This Item:

  1. 000071064200008.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.