Full metadata record
DC FieldValueLanguage
dc.contributor.authorLIN, SSen_US
dc.date.accessioned2014-12-08T15:03:13Z-
dc.date.available2014-12-08T15:03:13Z-
dc.date.issued1995-08-10en_US
dc.identifier.issn0022-0396en_US
dc.identifier.urihttp://dx.doi.org/10.1006/jdeq.1995.1112en_US
dc.identifier.urihttp://hdl.handle.net/11536/1782-
dc.description.abstractWe study the asymptotic behavior of positive solutions of the semilinear elliptic equation Delta u + f(u) = 0 in Omega(a), u = 0 on partial derivative Omega(a), where Omega(a),= {x is an element of R(N): a < x < a + 1} are expanding annuli as a --> infinity, and Sis positive and superlinear at both 0 and infinity. We first show that there are a priori bounds for some positive solutions u(a)(x) as a --> infinity. Then, if we fu: any direction, after a suitable translation of u(a) the limiting solutions are non-negative solutions on the infinite strip. We can obtain more detailed descriptions of these limits if u(a) is radially symmetric, least-energy, or least-energy with a particular symmetry. (C) 1995 Academic Press, Inc.en_US
dc.language.isoen_USen_US
dc.titleASYMPTOTIC-BEHAVIOR OF POSITIVE SOLUTIONS TO SEMILINEAR ELLIPTIC-EQUATIONS ON EXPANDING ANNULIen_US
dc.typeArticleen_US
dc.identifier.doi10.1006/jdeq.1995.1112en_US
dc.identifier.journalJOURNAL OF DIFFERENTIAL EQUATIONSen_US
dc.citation.volume120en_US
dc.citation.issue2en_US
dc.citation.spage255en_US
dc.citation.epage288en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:A1995RT83900001-
dc.citation.woscount18-
Appears in Collections:Articles


Files in This Item:

  1. A1995RT83900001.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.