Full metadata record
DC FieldValueLanguage
dc.contributor.authorYu, Shao-Mingen_US
dc.contributor.authorChou, Hung-Muen_US
dc.contributor.authorLo, Shih-Chingen_US
dc.date.accessioned2014-12-08T15:25:28Z-
dc.date.available2014-12-08T15:25:28Z-
dc.date.issued2005en_US
dc.identifier.isbn90-6764-443-9en_US
dc.identifier.issn1573-4196en_US
dc.identifier.urihttp://hdl.handle.net/11536/17857-
dc.description.abstractDrift-Diffusion Density Gradient model (DD-DG) is the most popular model for simulating carrier transport phenomena in sub-micron semiconductor device, especially in two- or three-dimensional space. In deep sub-micron regime, the width effects cannot be neglected while simulating, i.e., three-dimensional simulation must be considered. However, three-dimensional computing is time-consuming. Fortunately, the dilemma of time consuming or rough approximation can be overcame by advanced computing technique. In this paper, we employ a parallel direct solving method to simulate double-gate metal-oxide-semiconductor field effect transistors (DG-MOSFET). The computational benchmarks of the parallel simulation, parallel speedup, load balance, and efficiency are studied in this work. Parallel numerical simulation of semiconductor devices is shown to be an indispensable tool for fast characterization and optimal design of semiconductor devices.en_US
dc.language.isoen_USen_US
dc.subjectquantum effectsen_US
dc.subjectDG-MOSFETen_US
dc.subjectdrift-diffusion modelen_US
dc.subjectdensity gradient modelen_US
dc.subjectnumerical simulationen_US
dc.subjectparallel computing.en_US
dc.titleParallel simulation of deep sub-micron double-gate metal-oxide-semiconductor field effect transistorsen_US
dc.typeProceedings Paperen_US
dc.identifier.journalAdvances in Computational Methods in Sciences and Engineering 2005, Vols 4 A & 4 Ben_US
dc.citation.volume4A-4Ben_US
dc.citation.spage1104en_US
dc.citation.epage1107en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000238054400268-
Appears in Collections:Conferences Paper