完整後設資料紀錄
DC 欄位語言
dc.contributor.authorSheu, Jiuh-Biingen_US
dc.contributor.authorLan, Lawrence W.en_US
dc.contributor.authorHuang, Yi-Sanen_US
dc.date.accessioned2014-12-08T15:25:45Z-
dc.date.available2014-12-08T15:25:45Z-
dc.date.issued2009en_US
dc.identifier.issn1812-8602en_US
dc.identifier.urihttp://hdl.handle.net/11536/18165-
dc.identifier.urihttp://dx.doi.org/10.1080/18128600802591681en_US
dc.description.abstractShort-term prediction of dynamic traffic states remains critical in the field of advanced traffic management systems and related areas. In this article, a novel real-time recurrent learning (RTRL) algorithm is proposed to address the above issue. We dabble in comparing pair predictability of linear method versus RTRL algorithms and simple non-linear method versus RTRL algorithms individually using a first-order autoregressive time-series AR(1) and a deterministic function. A field study tested with flow, speed and occupancy series data collected directly from dual-loop detectors on a freeway is conducted. The numerical results reveal that the performance of RTRL algorithms in predicting short-term traffic dynamics is satisfactorily accepted. Furthermore, it is found that the dynamics of short-term traffic states characterised in different time intervals, collected in diverse time lags and times of day may have significant effects on the prediction accuracy of the proposed algorithms.en_US
dc.language.isoen_USen_US
dc.subjectreal-time recurrent learningen_US
dc.subjecttraffic dynamicsen_US
dc.subjectstochasticen_US
dc.subjectdeterministicen_US
dc.titleShort-term prediction of traffic dynamics with real-time recurrent learning algorithmsen_US
dc.typeArticle; Proceedings Paperen_US
dc.identifier.doi10.1080/18128600802591681en_US
dc.identifier.journalTRANSPORTMETRICAen_US
dc.citation.volume5en_US
dc.citation.issue1en_US
dc.citation.spage59en_US
dc.citation.epage83en_US
dc.contributor.department運輸與物流管理系 註:原交通所+運管所zh_TW
dc.contributor.departmentDepartment of Transportation and Logistics Managementen_US
dc.identifier.wosnumberWOS:000265585700005-
顯示於類別:會議論文


文件中的檔案:

  1. 000265585700005.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。