Full metadata record
DC FieldValueLanguage
dc.contributor.authorTong, Len_US
dc.contributor.authorLee, Hen_US
dc.contributor.authorHuang, CFen_US
dc.contributor.authorLin, CKen_US
dc.contributor.authorYang, CHen_US
dc.date.accessioned2014-12-08T15:25:53Z-
dc.date.available2014-12-08T15:25:53Z-
dc.date.issued2004en_US
dc.identifier.isbn7-5062-7342-Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/18334-
dc.description.abstractThe wafer defects influence the yield of a wafer. The integrated circuits (IC) manufacturers usually use a Poisson distribution based c-chart to monitor the lot-to-lot wafer defects. As the wafer size increases, defects on wafer tend to cluster. When the c-chart is used, the clustered defects frequently cause erroneous results. The main objective of this study is to develop a hierarchical adaptive control process to monitor the clustered defects effectively and detect the wafer-to-wafer variation and lot-to-lot variation simultaneously using data mining technique.en_US
dc.language.isoen_USen_US
dc.subjectwafer defectsen_US
dc.subjectc-charten_US
dc.subjectdefect clusteringen_US
dc.subjectadaptive control charten_US
dc.subjectdata miningen_US
dc.titleConstructing control process for wafer defects using data mining techniqueen_US
dc.typeProceedings Paperen_US
dc.identifier.journalSHAPING BUSINESS STRATEGY IN A NETWORKED WORLD, VOLS 1 AND 2, PROCEEDINGSen_US
dc.citation.spage1125en_US
dc.citation.epage1129en_US
dc.contributor.department工業工程與管理學系zh_TW
dc.contributor.departmentDepartment of Industrial Engineering and Managementen_US
dc.identifier.wosnumberWOS:000226778000203-
Appears in Collections:Conferences Paper