Full metadata record
DC FieldValueLanguage
dc.contributor.authorKu, FCAen_US
dc.contributor.authorChing, YTen_US
dc.date.accessioned2014-12-08T15:26:02Z-
dc.date.available2014-12-08T15:26:02Z-
dc.date.issued2003en_US
dc.identifier.isbn0-8194-4830-3en_US
dc.identifier.issn0277-786Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/18447-
dc.identifier.urihttp://dx.doi.org/10.1117/12.479807en_US
dc.description.abstractConfocal microscopy is an important tool in neural science research. Using proper staining technique, the neural network can be visualized in the confocal microscopic images. It is a great help if neural scientists can directly visualize the 3D neural network. Volume render the neuron fibers is not easy since other objects such as neuropils are also polluted in the staining process and the neuron fiber is thin comparing to the background. Preprocessing of the image to enhance the neuron fibers before volume rendering can help to build a better 3D image of the neural network. In this study, we used the Fourier Transform, the Wavelet Transform, and the matched filter techniques to enhance the neural fibers before volume rendering is applied. Experimental results show that such preprocessing steps help to generate a more clear 3D images of the neural network.en_US
dc.language.isoen_USen_US
dc.subjectneuron fibers visualizationen_US
dc.subjectconfocal microscopic volume imageen_US
dc.subjectWavelet transformen_US
dc.subjectmatched filteren_US
dc.subjectvolume renderingen_US
dc.titleVolume rendering the neural network in an insect brain in confocal microscopic volume imagesen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1117/12.479807en_US
dc.identifier.journalMEDICAL IMAGING 2003: VISUALIZATION, IMAGE-GUIDED PROCEDURES, AND DISPLAYen_US
dc.citation.volume5029en_US
dc.citation.spage661en_US
dc.citation.epage668en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000183701400071-
Appears in Collections:Conferences Paper


Files in This Item:

  1. 000183701400071.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.