完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLi, HFen_US
dc.contributor.authorShan, MKen_US
dc.date.accessioned2014-12-08T15:26:24Z-
dc.date.available2014-12-08T15:26:24Z-
dc.date.issued2002en_US
dc.identifier.isbn0-8194-4480-4en_US
dc.identifier.issn0277-786Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/18739-
dc.identifier.urihttp://dx.doi.org/10.1117/12.460235en_US
dc.description.abstractWeb usage mining is a key knowledge discovery research and as such has been well researched. So far, this research has focused mainly on databases containing access log data only. However, many real-world databases contain users profile data and current solutions for this situation are still insufficient. In this paper we have a large database containing of user profile information together with users web-pages navigational patterns. The user profile data includes quantitative attributes, such as salary or age, and categorical attributes, such as sex or marital status. We introduce the concept of profile navigation patterns, which discusses the problem of relating user profile information to navigation behavior. An example of such profile navigation pattern might be "20% of married people between age 25 and 30 have the similar navigational behavior <(ac)(c,b)(b,e)(e,a)(od)> ", where a, b, c, d, e are web pages in a web site. The navigation sequences may contain the generic traversal behavior, e.g. trend to backward moves, cycles etc. The objective of mining profile navigation patterns is to identify browser profile for web personalization. We present PNP, a new algorithm that discovers these profile navigation patterns. Scale-up experiments show that PNP scales linearly with the number of transactions.en_US
dc.language.isoen_USen_US
dc.subjectWeb miningen_US
dc.subjectWeb usage miningen_US
dc.subjectcategoricalen_US
dc.subjectquantitativeen_US
dc.subjectnavigation sequenceen_US
dc.subjectprofile navigation patternsen_US
dc.subjectattributeen_US
dc.subjectPNPen_US
dc.titlePNP: Mining of profile navigational patternsen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1117/12.460235en_US
dc.identifier.journalDATA MINING AND KNOWLEDGE DISCOVERY: THEORY, TOOLS AND TECHNOLOGY IVen_US
dc.citation.volume4730en_US
dc.citation.spage252en_US
dc.citation.epage260en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000176405500030-
顯示於類別:會議論文


文件中的檔案:

  1. 000176405500030.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。