完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLuo, WCen_US
dc.contributor.authorSong, KTen_US
dc.date.accessioned2014-12-08T15:26:35Z-
dc.date.available2014-12-08T15:26:35Z-
dc.date.issued2002en_US
dc.identifier.isbn0-7803-7620-Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/18876-
dc.description.abstractCMAC based control schemes have been studied by many researchers. It is well recognized that properly designed CMAC controllers provide useful and practical tools for precision control of non-linear systems. For complex trajectories, however, the convergence speed of CMAC can be slow because the CMAC module takes much time in learning the inverse dynamics of the plant. Therefore, one practical difficulty of CMAC based controller design is the selection of appropriate learning rate. In this paper, we present a method for selection of optimal CMAC learning rate. Furthermore, we demonstrate that the proposed GA-based approach to parameter selection can provide a global optimal solution. Computer simulation results confirm the effectiveness of the proposed method.en_US
dc.language.isoen_USen_US
dc.subjectartificial neural networksen_US
dc.subjectgenetic algorithmsen_US
dc.subjectlearning controlen_US
dc.subjectparameter optimizationen_US
dc.titleSelection of optimal learning rates in CMAC based control schemesen_US
dc.typeProceedings Paperen_US
dc.identifier.journalPROCEEDINGS OF THE 2002 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROLen_US
dc.citation.spage212en_US
dc.citation.epage216en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000179732300036-
顯示於類別:會議論文