完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLIN, SKen_US
dc.date.accessioned2014-12-08T15:03:21Z-
dc.date.available2014-12-08T15:03:21Z-
dc.date.issued1995-06-01en_US
dc.identifier.issn1042-296Xen_US
dc.identifier.urihttp://dx.doi.org/10.1109/70.388778en_US
dc.identifier.urihttp://hdl.handle.net/11536/1890-
dc.description.abstractThis paper deals with the problem of identifying the inertia parameters of a manipulator, We begin by introducing the terminology of minimal linear combinations of the inertia parameters (MLC's) that are linearly independent of one another and determine the manipulator dynamics while keeping the number of linear combinations of the inertia parameters to a minimum, The problem is then to find an identification procedure for estimating the MLC's and to use the MLC's in the inverse dynamics for control. The recursive Newton-Euler formulation is rederived in terms of the MLC's. The resulting formulation is almost as efficient as the most efficient formulation in the literature. This formulation also provides a starting point from which to derive a recursive identification procedure, The identification procedure is simple and efficient, since it does not require symbolic closed-form equations and it has a recursive structure. The three themes concerning the dynamic modeling of a manipulator-the MLC's, the inverse dynamics in terms of the MLC's, and the identification procedure-are treated in sequence in this paper.en_US
dc.language.isoen_USen_US
dc.titleMINIMAL LINEAR-COMBINATIONS OF THE INERTIA PARAMETERS OF A MANIPULATORen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/70.388778en_US
dc.identifier.journalIEEE TRANSACTIONS ON ROBOTICS AND AUTOMATIONen_US
dc.citation.volume11en_US
dc.citation.issue3en_US
dc.citation.spage360en_US
dc.citation.epage373en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:A1995RC43400005-
dc.citation.woscount7-
顯示於類別:期刊論文


文件中的檔案:

  1. A1995RC43400005.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。