Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, KYen_US
dc.date.accessioned2014-12-08T15:27:17Z-
dc.date.available2014-12-08T15:27:17Z-
dc.date.issued1998en_US
dc.identifier.isbn0-7803-4860-5en_US
dc.identifier.urihttp://hdl.handle.net/11536/19530-
dc.description.abstractHopfield neural network can solve the optimization problem. We use Hopfield net to the seismic horizon picking. the peak position of each seismic wavelet is corresponding to one neuron. We transform the constraints of the detecting local horizon patterns and the constraints of extracting one horizon each time into the system energy function. From the theory of Hopfield net, changing the values of neurons can decrease the energy. The system will be stable until the values of neurons are not changed One horizon is extracted by using the algorithm at each time. Remove the extracted horizon from the original seismic data and extract the next horizon until the last horizon, is extracted From the experimental results in bright spot, the picked horizons can match the visual inspection.en_US
dc.language.isoen_USen_US
dc.titleNeural network for seismic horizon pickingen_US
dc.typeProceedings Paperen_US
dc.identifier.journalIEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCEen_US
dc.citation.spage1840en_US
dc.citation.epage1844en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000074493400336-
Appears in Collections:Conferences Paper