完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHsieh, Jin-Jianen_US
dc.contributor.authorDing, A. Adamen_US
dc.contributor.authorWang, Weijingen_US
dc.date.accessioned2014-12-08T15:27:17Z-
dc.date.available2014-12-08T15:27:17Z-
dc.date.issued2011-09-01en_US
dc.identifier.issn0006-341Xen_US
dc.identifier.urihttp://dx.doi.org/10.1111/j.1541-0420.2010.01497.xen_US
dc.identifier.urihttp://hdl.handle.net/11536/19537-
dc.description.abstractRecurrent events data are commonly seen in longitudinal follow-up studies. Dependent censoring often occurs due to death or exclusion from the study related to the disease process. In this article, we assume flexible marginal regression models on the recurrence process and the dependent censoring time without specifying their dependence structure. The proposed model generalizes the approach by Ghosh and Lin (2003, Biometrics 59, 877-885). The technique of artificial censoring provides a way to maintain the homogeneity of the hypothetical error variables under dependent censoring. Here we propose to apply this technique to two Gehan-type statistics. One considers only order information for pairs whereas the other utilizes additional information of observed censoring times available for recurrence data. A model-checking procedure is also proposed to assess the adequacy of the fitted model. The proposed estimators have good asymptotic properties. Their finite-sample performances are examined via simulations. Finally, the proposed methods are applied to analyze the AIDS linked to the intravenous experiences cohort data.en_US
dc.language.isoen_USen_US
dc.subjectArtificial censoringen_US
dc.subjectDependent censoringen_US
dc.subjectLongitudinal studyen_US
dc.subjectMultiple eventsen_US
dc.subjectPairwise comparisonen_US
dc.subjectRecurrent event dataen_US
dc.subjectSurvival analysisen_US
dc.subjectU-statisticsen_US
dc.titleRegression Analysis for Recurrent Events Data under Dependent Censoringen_US
dc.typeArticleen_US
dc.identifier.doi10.1111/j.1541-0420.2010.01497.xen_US
dc.identifier.journalBIOMETRICSen_US
dc.citation.volume67en_US
dc.citation.issue3en_US
dc.citation.spage719en_US
dc.citation.epage729en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000294866800005-
dc.citation.woscount1-
顯示於類別:期刊論文


文件中的檔案:

  1. 000294866800005.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。