完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHu, Chih-Weien_US
dc.contributor.authorChang, Ting-Changen_US
dc.contributor.authorTu, Chun-Haoen_US
dc.contributor.authorChen, Yang-Dongen_US
dc.contributor.authorLin, Chao-Chengen_US
dc.contributor.authorChen, Min-Chenen_US
dc.contributor.authorLin, Jian-Yangen_US
dc.contributor.authorSze, Simon M.en_US
dc.contributor.authorTseng, Tseung-Yuenen_US
dc.date.accessioned2014-12-08T15:27:20Z-
dc.date.available2014-12-08T15:27:20Z-
dc.date.issued2011-09-01en_US
dc.identifier.issn1536-125Xen_US
dc.identifier.urihttp://dx.doi.org/10.1109/TNANO.2010.2095466en_US
dc.identifier.urihttp://hdl.handle.net/11536/19592-
dc.description.abstractIn this study, ZrO(2) formed by the nitric acid oxidation method is proposed to be the tunneling oxide for nonvolatile memory device applications. The sputtered Zr thin film was oxidized by immersing in the nitric acid solution (HNO(3):H(2)O = 1:10) for 60 s at room temperature. The quality of the formed ZrO(2) was also extracted by the capacitance-voltage and current density-voltage measurements. Then, X-ray photoelectron spectroscopy has been used to confirm that the deposited Zr can be oxidized completely after the oxidation process. Moreover, a CoSi(2) thin film was deposited on the nitric acid oxidized ZrO(2) as the self-assembled layer of the memory device. After the device fabrication, the electrical and material characteristics of the CoSi(2) nanocrystal memory devices have also been demonstrated and discussed.en_US
dc.language.isoen_USen_US
dc.titleNitric Acid Oxidized ZrO(2) as the Tunneling Oxide of Cobalt Silicide Nanocrystal Memory Devicesen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TNANO.2010.2095466en_US
dc.identifier.journalIEEE TRANSACTIONS ON NANOTECHNOLOGYen_US
dc.citation.volume10en_US
dc.citation.issue5en_US
dc.citation.spage1031en_US
dc.citation.epage1035en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
顯示於類別:期刊論文