Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, C. S.en_US
dc.contributor.authorHu, C. N.en_US
dc.date.accessioned2014-12-08T15:27:43Z-
dc.date.available2014-12-08T15:27:43Z-
dc.date.issued2011-09-01en_US
dc.identifier.issn0045-7949en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.compstruc.2011.04.010en_US
dc.identifier.urihttp://hdl.handle.net/11536/19960-
dc.description.abstractAn eigenfunction expansion approach is combined with a power series solution technique to establish the asymptotic solutions for geometrically induced electroelastic singularities in a piezoelectric body of revolution, with its direction of polarization not parallel to the axis of revolution. The asymptotic solutions are obtained by directly solving the three-dimensional equilibrium and Maxwell's equations in terms of displacement components and electric potential. When the direction of polarization is not along the axis of revolution, the assumption of axisymmetric deformation that is often made in the published literature is not valid, and the direction of polarization and the circular coordinate variable can substantially affect the singularities. The numerical results related to singularity orders are shown in graphical form for bodies of revolution that comprise a single material (PZT-4 or PZT-5H) or bonded piezo/piezo (PZT-4/PZT-5H) or piezo/isotropic elastic (PZT-4/Al or PZT-5H/Al) materials. This is the first study to present results for the direction of polarization not along the axis of revolution. (C) 2011 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectPiezoelectric bodies of revolutionen_US
dc.subjectElectroelastic singularitiesen_US
dc.subjectEigenfunction expansion approachen_US
dc.subjectAsymptotic solutionsen_US
dc.titleGeometrically induced stress singularities in a piezoelectric body of revolutionen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.compstruc.2011.04.010en_US
dc.identifier.journalCOMPUTERS & STRUCTURESen_US
dc.citation.volume89en_US
dc.citation.issue17-18en_US
dc.citation.spage1681en_US
dc.citation.epage1696en_US
dc.contributor.department土木工程學系zh_TW
dc.contributor.departmentDepartment of Civil Engineeringen_US
dc.identifier.wosnumberWOS:000293672800010-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. 000293672800010.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.