Full metadata record
DC FieldValueLanguage
dc.contributor.authorTsai, Mingen_US
dc.contributor.authorTsai, Tsung-Hanen_US
dc.contributor.authorTan, Jimmy J. M.en_US
dc.contributor.authorHsu, Lih-Hsingen_US
dc.date.accessioned2014-12-08T15:27:49Z-
dc.date.available2014-12-08T15:27:49Z-
dc.date.issued2011-09-01en_US
dc.identifier.issn0895-7177en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.mcm.2011.04.034en_US
dc.identifier.urihttp://hdl.handle.net/11536/20069-
dc.description.abstractA graph G is k-ordered if for any sequence of k distinct vertices nu(1), nu(2), ..., nu(k) of G there exists a cycle in G containing these k vertices in the specified order. In 1997, Ng and Schultz posed the question of the existence of 4-ordered 3-regular graphs other than the complete graph K(4) and the complete bipartite graph K(3,3). In 2008, Meszaros solved the question by proving that the Petersen graph and the Heawood graph are 4-ordered 3-regular graphs. Moreover, the generalized Honeycomb torus GHT(3, n, 1) is 4-ordered for any even integer n with n >= 8. Up to now, all the known 4-ordered 3-regular graphs are vertex transitive. Among these graphs, there are only two non-bipartite graphs, namely the complete graph K(4) and the Petersen graph. In this paper, we prove that there exists a bipartite non-vertex-transitive 4-ordered 3-regular graph of order n for any sufficiently large even integer n. Moreover, there exists a non-bipartite non-vertex-transitive 4-ordered 3-regular graph of order n for any sufficiently large even integer n. (C) 2011 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectk-ordereden_US
dc.subjectCubic graphsen_US
dc.titleOn 4-ordered 3-regular graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.mcm.2011.04.034en_US
dc.identifier.journalMATHEMATICAL AND COMPUTER MODELLINGen_US
dc.citation.volume54en_US
dc.citation.issue5-6en_US
dc.citation.spage1613en_US
dc.citation.epage1619en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000291243300036-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000291243300036.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.