完整後設資料紀錄
DC 欄位語言
dc.contributor.authorYuang, MCen_US
dc.contributor.authorTien, PLen_US
dc.date.accessioned2014-12-08T15:27:56Z-
dc.date.available2014-12-08T15:27:56Z-
dc.date.issued1994en_US
dc.identifier.isbn0-7803-3104-4en_US
dc.identifier.urihttp://hdl.handle.net/11536/20215-
dc.description.abstractMultimedia communications require intra-media synchronization for video data to prevent potential playout discontinuity resulting from network delay variation (jitter) while still achieving satisfactory playout throughput. In this paper, we propose a neural-network-based intra-media synchronization mechanism, called Neural Network Smoother (NNS). NNS is composed of a Neural Network (NN) Traffic Predictor, an NN Window Determinator, and a window-based playout smoothing algorithm. The NN Traffic Predictor employs an on-line-trained Back Propagation Neural Network (BPNN) to periodically predict future traffic characteristics. The NN Window Determinator determines the corresponding optimal window by means of an off-line-trained BPNN in an effort to achieve a maximum of the playout Quality (Q) value. According to the window, the window-based playout smoothing algorithm then dynamically adopts various playout rates. Compared to two other playout approaches, simulation results show that NNS achieves high-throughput and low-discontinuity playout under a variety of traffic arrivals.en_US
dc.language.isoen_USen_US
dc.titleIntra-media synchronization for multimedia communicationsen_US
dc.typeProceedings Paperen_US
dc.identifier.journalPROCEEDINGS OF THE IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT'96)en_US
dc.citation.spage480en_US
dc.citation.epage484en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:A1994BH94Y00108-
顯示於類別:會議論文