Full metadata record
DC FieldValueLanguage
dc.contributor.authorTeng, Yuan-Hsiangen_US
dc.contributor.authorTan, Jimmy J. M.en_US
dc.contributor.authorTsay, Chey-Woeien_US
dc.contributor.authorHsu, Lih-Hsingen_US
dc.date.accessioned2014-12-08T15:28:02Z-
dc.date.available2014-12-08T15:28:02Z-
dc.date.issued2012-11-01en_US
dc.identifier.issn1382-6905en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s10878-011-9418-yen_US
dc.identifier.urihttp://hdl.handle.net/11536/20305-
dc.description.abstractLet n and k be positive integers with n-ka parts per thousand yen2. The arrangement graph A (n,k) is recognized as an attractive interconnection networks. Let x, y, and z be three different vertices of A (n,k) . Let l be any integer with . We shall prove the following existance properties of Hamiltonian path: (1) for n-ka parts per thousand yen3 or (n,k)=(3,1), there exists a Hamiltonian path R(x,y,z;l) from x to z such that d (R(x,y,z;l))(x,y)=l; (2) for n-k=2 and na parts per thousand yen5, there exists a Hamiltonian path R(x,y,z;l) except for the case that x, y, and z are adjacent to each other.en_US
dc.language.isoen_USen_US
dc.subjectArrangement graphen_US
dc.subjectPanpositionable Hamiltonianen_US
dc.subjectPanconnecteden_US
dc.subjectInterconnection networken_US
dc.titleThe paths embedding of the arrangement graphs with prescribed vertices in given positionen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10878-011-9418-yen_US
dc.identifier.journalJOURNAL OF COMBINATORIAL OPTIMIZATIONen_US
dc.citation.volume24en_US
dc.citation.issue4en_US
dc.citation.spage627en_US
dc.citation.epage646en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000309347400015-
dc.citation.woscount5-
Appears in Collections:Articles


Files in This Item:

  1. 000309347400015.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.