Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Teng, Yuan-Hsiang | en_US |
| dc.contributor.author | Tan, Jimmy J. M. | en_US |
| dc.contributor.author | Tsay, Chey-Woei | en_US |
| dc.contributor.author | Hsu, Lih-Hsing | en_US |
| dc.date.accessioned | 2014-12-08T15:28:02Z | - |
| dc.date.available | 2014-12-08T15:28:02Z | - |
| dc.date.issued | 2012-11-01 | en_US |
| dc.identifier.issn | 1382-6905 | en_US |
| dc.identifier.uri | http://dx.doi.org/10.1007/s10878-011-9418-y | en_US |
| dc.identifier.uri | http://hdl.handle.net/11536/20305 | - |
| dc.description.abstract | Let n and k be positive integers with n-ka parts per thousand yen2. The arrangement graph A (n,k) is recognized as an attractive interconnection networks. Let x, y, and z be three different vertices of A (n,k) . Let l be any integer with . We shall prove the following existance properties of Hamiltonian path: (1) for n-ka parts per thousand yen3 or (n,k)=(3,1), there exists a Hamiltonian path R(x,y,z;l) from x to z such that d (R(x,y,z;l))(x,y)=l; (2) for n-k=2 and na parts per thousand yen5, there exists a Hamiltonian path R(x,y,z;l) except for the case that x, y, and z are adjacent to each other. | en_US |
| dc.language.iso | en_US | en_US |
| dc.subject | Arrangement graph | en_US |
| dc.subject | Panpositionable Hamiltonian | en_US |
| dc.subject | Panconnected | en_US |
| dc.subject | Interconnection network | en_US |
| dc.title | The paths embedding of the arrangement graphs with prescribed vertices in given position | en_US |
| dc.type | Article | en_US |
| dc.identifier.doi | 10.1007/s10878-011-9418-y | en_US |
| dc.identifier.journal | JOURNAL OF COMBINATORIAL OPTIMIZATION | en_US |
| dc.citation.volume | 24 | en_US |
| dc.citation.issue | 4 | en_US |
| dc.citation.spage | 627 | en_US |
| dc.citation.epage | 646 | en_US |
| dc.contributor.department | 資訊工程學系 | zh_TW |
| dc.contributor.department | Department of Computer Science | en_US |
| dc.identifier.wosnumber | WOS:000309347400015 | - |
| dc.citation.woscount | 5 | - |
| Appears in Collections: | Articles | |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.

