Full metadata record
DC FieldValueLanguage
dc.contributor.authorShih, Yuan-Kangen_US
dc.contributor.authorKao, Shin-Shinen_US
dc.date.accessioned2014-12-08T15:28:05Z-
dc.date.available2014-12-08T15:28:05Z-
dc.date.issued2011-08-12en_US
dc.identifier.issn0304-3975en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.tcs.2011.04.035en_US
dc.identifier.urihttp://hdl.handle.net/11536/20343-
dc.description.abstractThe k-ary n-cube, Q(n)(k) is one of the most popular interconnection networks. Let n >= 2 and k >= 3. It is known that Q(n)(k) is a nonbipartite (resp. bipartite) graph when k is odd (resp. even). In this paper, we prove that there exist r vertex disjoint paths {P(i) vertical bar 0 <= i <= r - 1} between any two distinct vertices u and v of Q(n)(k) when k is odd, and there exist r vertex disjoint paths {R(i) vertical bar 0 <= i <= r - 1} between any pair of vertices to and b from different partite sets of Q(n)(k) when k is even, such that boolean OR(r-1)(i=0) P(i) or boolean OR(r-1)(i=0) R(i) covers all vertices of Q(n)(k) for 1 <= r <= 2n. In other words, we construct the one-to-one r-disjoint path cover of Q(n)(k) for any r with 1 <= r <= 2n. The result is optimal since any vertex in Q(n)(k) has exactly 2n neighbors. (C) 2011 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectHypercubeen_US
dc.subjectk-ary n-cubeen_US
dc.subjectHamiltonianen_US
dc.subjectDisjoint path coveren_US
dc.titleOne-to-one disjoint path covers on k-ary n-cubesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.tcs.2011.04.035en_US
dc.identifier.journalTHEORETICAL COMPUTER SCIENCEen_US
dc.citation.volume412en_US
dc.citation.issue35en_US
dc.citation.spage4513en_US
dc.citation.epage4530en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000294031200006-
dc.citation.woscount9-
Appears in Collections:Articles


Files in This Item:

  1. 000294031200006.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.