完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Shih, Yuan-Kang | en_US |
dc.contributor.author | Kao, Shin-Shin | en_US |
dc.date.accessioned | 2014-12-08T15:28:05Z | - |
dc.date.available | 2014-12-08T15:28:05Z | - |
dc.date.issued | 2011-08-12 | en_US |
dc.identifier.issn | 0304-3975 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.tcs.2011.04.035 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/20343 | - |
dc.description.abstract | The k-ary n-cube, Q(n)(k) is one of the most popular interconnection networks. Let n >= 2 and k >= 3. It is known that Q(n)(k) is a nonbipartite (resp. bipartite) graph when k is odd (resp. even). In this paper, we prove that there exist r vertex disjoint paths {P(i) vertical bar 0 <= i <= r - 1} between any two distinct vertices u and v of Q(n)(k) when k is odd, and there exist r vertex disjoint paths {R(i) vertical bar 0 <= i <= r - 1} between any pair of vertices to and b from different partite sets of Q(n)(k) when k is even, such that boolean OR(r-1)(i=0) P(i) or boolean OR(r-1)(i=0) R(i) covers all vertices of Q(n)(k) for 1 <= r <= 2n. In other words, we construct the one-to-one r-disjoint path cover of Q(n)(k) for any r with 1 <= r <= 2n. The result is optimal since any vertex in Q(n)(k) has exactly 2n neighbors. (C) 2011 Elsevier B.V. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Hypercube | en_US |
dc.subject | k-ary n-cube | en_US |
dc.subject | Hamiltonian | en_US |
dc.subject | Disjoint path cover | en_US |
dc.title | One-to-one disjoint path covers on k-ary n-cubes | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.tcs.2011.04.035 | en_US |
dc.identifier.journal | THEORETICAL COMPUTER SCIENCE | en_US |
dc.citation.volume | 412 | en_US |
dc.citation.issue | 35 | en_US |
dc.citation.spage | 4513 | en_US |
dc.citation.epage | 4530 | en_US |
dc.contributor.department | 資訊工程學系 | zh_TW |
dc.contributor.department | Department of Computer Science | en_US |
dc.identifier.wosnumber | WOS:000294031200006 | - |
dc.citation.woscount | 9 | - |
顯示於類別: | 期刊論文 |