完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Gau, Hwa-Long | en_US |
dc.contributor.author | Wu, Pei Yuan | en_US |
dc.date.accessioned | 2014-12-08T15:28:21Z | - |
dc.date.available | 2014-12-08T15:28:21Z | - |
dc.date.issued | 2012 | en_US |
dc.identifier.issn | 0308-1087 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/20509 | - |
dc.identifier.uri | http://dx.doi.org/10.1080/03081087.2011.611945 | en_US |
dc.description.abstract | We show that (1) if A is a nonzero quasinilpotent operator with ran A(n) closed for some n >= 1, then its numerical range W(A) contains 0 in its interior and has a differentiable boundary, and (2) a noncircular elliptic disc can be the numerical range of a nilpotent operator with nilpotency 3 on an infinite-dimensional separable space. (1) is a generalization of the known result for nonzero nilpotent operators, and (2) is in contrast to the finite-dimensional case, where the only elliptic discs which are the numerical ranges of nilpotent finite matrices are the circular ones centred at the origin. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | numerical range | en_US |
dc.subject | nilpotent operator | en_US |
dc.subject | quasinilpotent operator | en_US |
dc.subject | essential numerical range | en_US |
dc.title | Noncircular elliptic discs as numerical ranges of nilpotent operators | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1080/03081087.2011.611945 | en_US |
dc.identifier.journal | LINEAR & MULTILINEAR ALGEBRA | en_US |
dc.citation.volume | 60 | en_US |
dc.citation.issue | 11-12 | en_US |
dc.citation.spage | 1225 | en_US |
dc.citation.epage | 1233 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000310312900002 | - |
dc.citation.woscount | 0 | - |
顯示於類別: | 期刊論文 |