Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tu, Fang-Ting | en_US |
dc.date.accessioned | 2014-12-08T15:28:25Z | - |
dc.date.available | 2014-12-08T15:28:25Z | - |
dc.date.issued | 2011-08-01 | en_US |
dc.identifier.issn | 1793-0421 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1142/S1793042111004654 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/20571 | - |
dc.description.abstract | Let K be a non-Archimedean local field. In this paper, we first show that if an order in M(2, K) is the intersection of (finitely many) maximal orders in M(2, K), then it is the intersection of at most three maximal orders. Using this result, we obtain a complete classification of orders in M(2, K) that are intersections of maximal orders. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Orders in quaternion algebra | en_US |
dc.title | ON ORDERS OF M(2, K) OVER A NON-ARCHIMEDEAN LOCAL FIELD | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1142/S1793042111004654 | en_US |
dc.identifier.journal | INTERNATIONAL JOURNAL OF NUMBER THEORY | en_US |
dc.citation.volume | 7 | en_US |
dc.citation.issue | 5 | en_US |
dc.citation.spage | 1137 | en_US |
dc.citation.epage | 1149 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000294613800002 | - |
dc.citation.woscount | 1 | - |
Appears in Collections: | Articles |