Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Shu-Yien_US
dc.contributor.authorFuchs, Michaelen_US
dc.date.accessioned2014-12-08T15:28:34Z-
dc.date.available2014-12-08T15:28:34Z-
dc.date.issued2012-11-01en_US
dc.identifier.issn1071-5797en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.ffa.2012.08.001en_US
dc.identifier.urihttp://hdl.handle.net/11536/20664-
dc.description.abstractIn a recent paper, Kim and Nakada proved an analogue of Kurzweil's theorem for inhomogeneous Diophantine approximation of formal Laurent series over finite fields. Their proof used continued fraction theory and thus cannot be easily extended to simultaneous Diophantine approximation. In this note, we give another proof which works for simultaneous Diophantine approximation as well. (C) 2012 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectFormal Laurent seriesen_US
dc.subjectInhomogeneous Diophantine approximationen_US
dc.subjectSimultaneous Diophantine approximationen_US
dc.subjectKurzweil's theoremen_US
dc.titleA higher-dimensional Kurzweil theorem for formal Laurent series over finite fieldsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ffa.2012.08.001en_US
dc.identifier.journalFINITE FIELDS AND THEIR APPLICATIONSen_US
dc.citation.volume18en_US
dc.citation.issue6en_US
dc.citation.spage1195en_US
dc.citation.epage1206en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000310496500012-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000310496500012.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.