Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chen, Shu-Yi | en_US |
dc.contributor.author | Fuchs, Michael | en_US |
dc.date.accessioned | 2014-12-08T15:28:34Z | - |
dc.date.available | 2014-12-08T15:28:34Z | - |
dc.date.issued | 2012-11-01 | en_US |
dc.identifier.issn | 1071-5797 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.ffa.2012.08.001 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/20664 | - |
dc.description.abstract | In a recent paper, Kim and Nakada proved an analogue of Kurzweil's theorem for inhomogeneous Diophantine approximation of formal Laurent series over finite fields. Their proof used continued fraction theory and thus cannot be easily extended to simultaneous Diophantine approximation. In this note, we give another proof which works for simultaneous Diophantine approximation as well. (C) 2012 Elsevier Inc. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Formal Laurent series | en_US |
dc.subject | Inhomogeneous Diophantine approximation | en_US |
dc.subject | Simultaneous Diophantine approximation | en_US |
dc.subject | Kurzweil's theorem | en_US |
dc.title | A higher-dimensional Kurzweil theorem for formal Laurent series over finite fields | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.ffa.2012.08.001 | en_US |
dc.identifier.journal | FINITE FIELDS AND THEIR APPLICATIONS | en_US |
dc.citation.volume | 18 | en_US |
dc.citation.issue | 6 | en_US |
dc.citation.spage | 1195 | en_US |
dc.citation.epage | 1206 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000310496500012 | - |
dc.citation.woscount | 0 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.