完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Chiun-Sinen_US
dc.contributor.authorChiu, Sheng-Hsiungen_US
dc.contributor.authorLin, Tzu-Yuen_US
dc.date.accessioned2014-12-08T15:28:39Z-
dc.date.available2014-12-08T15:28:39Z-
dc.date.issued2012-11-01en_US
dc.identifier.issn0264-9993en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.econmod.2012.07.018en_US
dc.identifier.urihttp://hdl.handle.net/11536/20724-
dc.description.abstractTo address the nonlinear and non-stationary characteristics of financial time series such as foreign exchange rates, this study proposes a hybrid forecasting model using empirical mode decomposition (EMD) and least squares support vector regression (LSSVR) for foreign exchange rate forecasting. EMD is used to decompose the dynamics of foreign exchange rate into several intrinsic mode function (IMF) components and one residual component. LSSVR is constructed to forecast these IMFs and residual value individually, and then all these forecasted values are aggregated to produce the final forecasted value for foreign exchange rates. Empirical results show that the proposed EMD-LSSVR model outperforms the EMD-ARIMA (autoregressive integrated moving average) as well as the LSSVR and ARIMA models without time series decomposition. (C) 2012 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectEmpirical mode decompositionen_US
dc.subjectLeast-squares support vector regressionen_US
dc.subjectForeign exchange rate forecastingen_US
dc.subjectIntrinsic mode functionen_US
dc.titleEmpirical mode decomposition-based least squares support vector regression for foreign exchange rate forecastingen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.econmod.2012.07.018en_US
dc.identifier.journalECONOMIC MODELLINGen_US
dc.citation.volume29en_US
dc.citation.issue6en_US
dc.citation.spage2583en_US
dc.citation.epage2590en_US
dc.contributor.department管理科學系zh_TW
dc.contributor.departmentDepartment of Management Scienceen_US
dc.identifier.wosnumberWOS:000311184700050-
dc.citation.woscount6-
顯示於類別:期刊論文


文件中的檔案:

  1. 000311184700050.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。