Full metadata record
DC FieldValueLanguage
dc.contributor.authorJiang, Tsin-Fuen_US
dc.contributor.authorJheng, Shih-Daen_US
dc.contributor.authorLee, Yun-Minen_US
dc.contributor.authorSu, Zheng-Yaoen_US
dc.date.accessioned2019-04-03T06:42:47Z-
dc.date.available2019-04-03T06:42:47Z-
dc.date.issued2012-12-11en_US
dc.identifier.issn1539-3755en_US
dc.identifier.urihttp://dx.doi.org/10.1103/PhysRevE.86.066702en_US
dc.identifier.urihttp://hdl.handle.net/11536/20833-
dc.description.abstractThe Lande subtraction method has been widely used in Coulomb problems, but the momentum coordinate p is an element of (0,infinity) is assumed. In past applications, a very large range of p was used for accuracy. We derive the supplementary formulation with p is an element of (0, p(max)) at reasonably small p(max) for practical calculations. With the recipe, accuracy of the hydrogenic eigenspectrum is dramatically improved compared to the ordinary Lande formula by the same momentum grids. We apply the present formulation to strong-field atomic above-threshold ionization and high-order harmonic generations. We demonstrate that the proposed momentum space method can be another practical theoretical tool for atomic strong-field problems in addition to the existing methods. DOI:10.1103/PhysRevE.86.066702en_US
dc.language.isoen_USen_US
dc.titleLande subtraction method with finite integration limits and application to strong-field problemsen_US
dc.typeArticleen_US
dc.identifier.doi10.1103/PhysRevE.86.066702en_US
dc.identifier.journalPHYSICAL REVIEW Een_US
dc.citation.volume86en_US
dc.citation.issue6en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department物理研究所zh_TW
dc.contributor.departmentInstitute of Physicsen_US
dc.identifier.wosnumberWOS:000312297200005en_US
dc.citation.woscount4en_US
Appears in Collections:Articles


Files in This Item:

  1. 7a01ae432162a3bc8621caa141d39c26.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.