Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, Tsung-Mingen_US
dc.contributor.authorLin, Wen-Weien_US
dc.contributor.authorSu, Wei-Shuoen_US
dc.date.accessioned2014-12-08T15:29:14Z-
dc.date.available2014-12-08T15:29:14Z-
dc.date.issued2011-08-01en_US
dc.identifier.issn0029-599Xen_US
dc.identifier.urihttp://dx.doi.org/10.1007/s00211-011-0370-7en_US
dc.identifier.urihttp://hdl.handle.net/11536/21072-
dc.description.abstractIn this paper, we propose a palindromic quadratization approach, transforming a palindromic matrix polynomial of even degree to a palindromic quadratic pencil. Based on the (S + S(-1))-transform and Patel's algorithm, the structure-preserving algorithm can then be applied to solve the corresponding palindromic quadratic eigenvalue problem. Numerical experiments show that the relative residuals for eigenpairs of palindromic polynomial eigenvalue problems computed by palindromic quadratized eigenvalue problems are better than those via palindromic linearized eigenvalue problems or polyeig in MATLAB.en_US
dc.language.isoen_USen_US
dc.titlePalindromic quadratization and structure-preserving algorithm for palindromic matrix polynomials of even degreeen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00211-011-0370-7en_US
dc.identifier.journalNUMERISCHE MATHEMATIKen_US
dc.citation.volume118en_US
dc.citation.issue4en_US
dc.citation.spage713en_US
dc.citation.epage735en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000293191600004-
dc.citation.woscount2-
Appears in Collections:Articles


Files in This Item:

  1. 000293191600004.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.