完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, Tsung-Mingen_US
dc.contributor.authorLin, Wen-Weien_US
dc.contributor.authorSu, Wei-Shuoen_US
dc.date.accessioned2014-12-08T15:29:14Z-
dc.date.available2014-12-08T15:29:14Z-
dc.date.issued2011-08-01en_US
dc.identifier.issn0029-599Xen_US
dc.identifier.urihttp://dx.doi.org/10.1007/s00211-011-0370-7en_US
dc.identifier.urihttp://hdl.handle.net/11536/21072-
dc.description.abstractIn this paper, we propose a palindromic quadratization approach, transforming a palindromic matrix polynomial of even degree to a palindromic quadratic pencil. Based on the (S + S(-1))-transform and Patel's algorithm, the structure-preserving algorithm can then be applied to solve the corresponding palindromic quadratic eigenvalue problem. Numerical experiments show that the relative residuals for eigenpairs of palindromic polynomial eigenvalue problems computed by palindromic quadratized eigenvalue problems are better than those via palindromic linearized eigenvalue problems or polyeig in MATLAB.en_US
dc.language.isoen_USen_US
dc.titlePalindromic quadratization and structure-preserving algorithm for palindromic matrix polynomials of even degreeen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00211-011-0370-7en_US
dc.identifier.journalNUMERISCHE MATHEMATIKen_US
dc.citation.volume118en_US
dc.citation.issue4en_US
dc.citation.spage713en_US
dc.citation.epage735en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000293191600004-
dc.citation.woscount2-
顯示於類別:期刊論文


文件中的檔案:

  1. 000293191600004.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。