完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Huang, Tsung-Ming | en_US |
dc.contributor.author | Lin, Wen-Wei | en_US |
dc.contributor.author | Su, Wei-Shuo | en_US |
dc.date.accessioned | 2014-12-08T15:29:14Z | - |
dc.date.available | 2014-12-08T15:29:14Z | - |
dc.date.issued | 2011-08-01 | en_US |
dc.identifier.issn | 0029-599X | en_US |
dc.identifier.uri | http://dx.doi.org/10.1007/s00211-011-0370-7 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/21072 | - |
dc.description.abstract | In this paper, we propose a palindromic quadratization approach, transforming a palindromic matrix polynomial of even degree to a palindromic quadratic pencil. Based on the (S + S(-1))-transform and Patel's algorithm, the structure-preserving algorithm can then be applied to solve the corresponding palindromic quadratic eigenvalue problem. Numerical experiments show that the relative residuals for eigenpairs of palindromic polynomial eigenvalue problems computed by palindromic quadratized eigenvalue problems are better than those via palindromic linearized eigenvalue problems or polyeig in MATLAB. | en_US |
dc.language.iso | en_US | en_US |
dc.title | Palindromic quadratization and structure-preserving algorithm for palindromic matrix polynomials of even degree | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s00211-011-0370-7 | en_US |
dc.identifier.journal | NUMERISCHE MATHEMATIK | en_US |
dc.citation.volume | 118 | en_US |
dc.citation.issue | 4 | en_US |
dc.citation.spage | 713 | en_US |
dc.citation.epage | 735 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000293191600004 | - |
dc.citation.woscount | 2 | - |
顯示於類別: | 期刊論文 |