完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLee, Chang-Hsingen_US
dc.contributor.authorChen, Ling-Hweien_US
dc.contributor.authorWang, Wei-Kangen_US
dc.date.accessioned2014-12-08T15:29:18Z-
dc.date.available2014-12-08T15:29:18Z-
dc.date.issued2012-11-01en_US
dc.identifier.issn0098-3063en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TCE.2012.6414993en_US
dc.identifier.urihttp://hdl.handle.net/11536/21097-
dc.description.abstractIn our daily life, digital cameras and smart phones have been widely used to take pictures. However, digital cameras and smart phones have a limited dynamic range, which is much lower than that human eyes can perceive. Thus, the photographs taken in high dynamic range scenes often exhibit under-exposure or over-exposure artifacts in shadow or highlight regions. In this study, an image fusion based approach, called classified virtual exposure image fusion (CVEIF), is proposed for image enhancement. First, a function imitating the F-stop concept in photography is designed to generate several virtual images having different intensity. Then, a classified image fusion method, which blends pixels in distinct luminance classes using different fusion functions, is proposed to produce a fused image in which every image region is well exposed. Experimental results on four different kinds of generic images, including a normal image, a low-contrast images, a backlight image, and a dark scene image, have shown that the proposed CVEIF approach produced more pleasingly enhanced images than other methods(1).en_US
dc.language.isoen_USen_US
dc.subjectClassified virtual exposure image fusionen_US
dc.subjectcontrast enhancementen_US
dc.subjectexposure fusionen_US
dc.subjectimage fusionen_US
dc.titleImage Contrast Enhancement Using Classified Virtual Exposure Image Fusionen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TCE.2012.6414993en_US
dc.identifier.journalIEEE TRANSACTIONS ON CONSUMER ELECTRONICSen_US
dc.citation.volume58en_US
dc.citation.issue4en_US
dc.citation.spage1253en_US
dc.citation.epage1261en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000314168700021-
dc.citation.woscount3-
顯示於類別:期刊論文


文件中的檔案:

  1. 000314168700021.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。