Full metadata record
DC FieldValueLanguage
dc.contributor.authorHUNG, CAen_US
dc.contributor.authorLIN, SFen_US
dc.date.accessioned2014-12-08T15:03:34Z-
dc.date.available2014-12-08T15:03:34Z-
dc.date.issued1995en_US
dc.identifier.issn0893-6080en_US
dc.identifier.urihttp://hdl.handle.net/11536/2110-
dc.identifier.urihttp://dx.doi.org/10.1016/0893-6080(94)00106-Ven_US
dc.description.abstractThis paper introduces a neural network architecture called an adaptive Hamming net for learning of recognition categories. This model allows new prototypes to be added to an existing set of memorized prototypes without retraining the entire network. Under some model hypotheses, the functional behavior of the adaptive Hamming net is equivalent to that of a fast-learning ART 1 network, so some useful properties of ART 1 can be applied to the adaptive Hamming net. In addition, the proposed network finds the appropriate category more efficiently than ART 1:for the same input sequences, the adaptive Hamming net obtains the same recognition categories as ART 1 without any searching. The adaptive Hamming net not only reduces the training time of ART 1 but is also easier to implement. The adaptive Hamming net is limited to binary pattern clustering, but it can be extended to the case of analog input vectors by incorporating fuzzy logic techniques.en_US
dc.language.isoen_USen_US
dc.subjectNEURAL NETWORK ARCHITECTUREen_US
dc.subjectADAPTIVE HAMMING NETen_US
dc.subjectFAST-LEARNING ART 1en_US
dc.subjectFUZZY LOGICen_US
dc.titleADAPTIVE HAMMING NET - A FAST-LEARNING ART-1 MODEL WITHOUT SEARCHINGen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/0893-6080(94)00106-Ven_US
dc.identifier.journalNEURAL NETWORKSen_US
dc.citation.volume8en_US
dc.citation.issue4en_US
dc.citation.spage605en_US
dc.citation.epage618en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:A1995RC16500010-
dc.citation.woscount16-
Appears in Collections:Articles


Files in This Item:

  1. A1995RC16500010.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.