Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, Wei-Qiangen_US
dc.contributor.authorLi, Tiexiangen_US
dc.contributor.authorLi, Yung-Taen_US
dc.contributor.authorLin, Wen-Weien_US
dc.date.accessioned2014-12-08T15:29:25Z-
dc.date.available2014-12-08T15:29:25Z-
dc.date.issued2013-03-01en_US
dc.identifier.issn1070-5325en_US
dc.identifier.urihttp://dx.doi.org/10.1002/nla.1840en_US
dc.identifier.urihttp://hdl.handle.net/11536/21189-
dc.description.abstractIn this paper, we are concerned with the computation of a few eigenpairs with smallest eigenvalues in absolute value of quadratic eigenvalue problems. We first develop a semiorthogonal generalized Arnoldi method where the name comes from the application of a pseudo inner product in the construction of a generalized Arnoldi reduction for a generalized eigenvalue problem. The method applies the RayleighRitz orthogonal projection technique on the quadratic eigenvalue problem. Consequently, it preserves the spectral properties of the original quadratic eigenvalue problem. Furthermore, we propose a refinement scheme to improve the accuracy of the Ritz vectors for the quadratic eigenvalue problem. Given shifts, we also show how to restart the method by implicitly updating the starting vector and constructing better projection subspace. We combine the ideas of the refinement and the restart by selecting shifts upon the information of refined Ritz vectors. Finally, an implicitly restarted refined semiorthogonal generalized Arnoldi method is developed. Numerical examples demonstrate that the implicitly restarted semiorthogonal generalized Arnoldi method with or without refinement has superior convergence behaviors than the implicitly restarted Arnoldi method applied to the linearized quadratic eigenvalue problem. Copyright (c) 2012 John Wiley & Sons, Ltd.en_US
dc.language.isoen_USen_US
dc.subjectquadratic eigenvalue problemen_US
dc.subjectsemiorthogonal generalized Arnoldi methoden_US
dc.subjectorthogonal projectionen_US
dc.subjectrefinementen_US
dc.subjectrefined shiftsen_US
dc.subjectimplicit restarten_US
dc.titleA semiorthogonal generalized Arnoldi method and its variations for quadratic eigenvalue problemsen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/nla.1840en_US
dc.identifier.journalNUMERICAL LINEAR ALGEBRA WITH APPLICATIONSen_US
dc.citation.volume20en_US
dc.citation.issue2en_US
dc.citation.spage259en_US
dc.citation.epage280en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000314985700009-
dc.citation.woscount2-
Appears in Collections:Articles


Files in This Item:

  1. 000314985700009.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.