完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChiou, Yu-Chiunen_US
dc.contributor.authorFu, Chiangen_US
dc.date.accessioned2014-12-08T15:29:41Z-
dc.date.available2014-12-08T15:29:41Z-
dc.date.issued2013-01-01en_US
dc.identifier.issn0001-4575en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.aap.2012.03.030en_US
dc.identifier.urihttp://hdl.handle.net/11536/21317-
dc.description.abstractSince the factors contributing to crash frequency and severity usually differ, an integrated model under the multinomial generalized Poisson (MGP) architecture is proposed to analyze simultaneously crash frequency and severity-making estimation results increasingly efficient and useful. Considering the substitution pattern among severity levels and the shared error structure, four models are proposed and compared-the MGP model with or without error components (EMGP and MGP models, respectively) and two nested generalized Poisson models (NGP model). A case study based on accident data for Taiwan's No. 1 Freeway is conducted. The results show that the EMGP model has the best goodness-of-fit and prediction accuracy indices. Additionally, estimation results show that factors contributing to crash frequency and severity differ markedly. Safety improvement strategies are proposed accordingly. (C) 2012 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectCrash frequencyen_US
dc.subjectCrash severityen_US
dc.subjectMultinomial-generalized Poissonen_US
dc.subjectError componentsen_US
dc.titleModeling crash frequency and severity using multinomial-generalized Poisson model with error componentsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.aap.2012.03.030en_US
dc.identifier.journalACCIDENT ANALYSIS AND PREVENTIONen_US
dc.citation.volume50en_US
dc.citation.issueen_US
dc.citation.spage73en_US
dc.citation.epage82en_US
dc.contributor.department運輸與物流管理系 註:原交通所+運管所zh_TW
dc.contributor.departmentDepartment of Transportation and Logistics Managementen_US
dc.identifier.wosnumberWOS:000314191600010-
dc.citation.woscount7-
顯示於類別:期刊論文


文件中的檔案:

  1. 000314191600010.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。