完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Liu, Chia-an | en_US |
dc.contributor.author | Weng, Chih-wen | en_US |
dc.date.accessioned | 2014-12-08T15:29:43Z | - |
dc.date.available | 2014-12-08T15:29:43Z | - |
dc.date.issued | 2013-04-15 | en_US |
dc.identifier.issn | 0024-3795 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.laa.2012.12.016 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/21348 | - |
dc.description.abstract | Let G be a simple connected graph of order n with degree sequence d(1), d(2), ... , dr, in non-increasing, order. The spectral radius rho(G) of G is the largest eigenvalue of its adjacency matrix. For each positive integer l at most n, we give a sharp upper bound for rho(G) by a function of d(1), d(2), ... ,d(l), which generalizes a series of previous results. (C) 2013 Elsevier Inc. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Graph | en_US |
dc.subject | Adjacency matrix | en_US |
dc.subject | Spectral radius | en_US |
dc.subject | Degree sequence | en_US |
dc.title | Spectral radius and degree sequence of a graph | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.laa.2012.12.016 | en_US |
dc.identifier.journal | LINEAR ALGEBRA AND ITS APPLICATIONS | en_US |
dc.citation.volume | 438 | en_US |
dc.citation.issue | 8 | en_US |
dc.citation.spage | 3511 | en_US |
dc.citation.epage | 3515 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000316521500025 | - |
dc.citation.woscount | 5 | - |
顯示於類別: | 期刊論文 |