Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gau, Hwa-Long | en_US |
dc.contributor.author | Wu, Pei Yuan | en_US |
dc.date.accessioned | 2014-12-08T15:29:45Z | - |
dc.date.available | 2014-12-08T15:29:45Z | - |
dc.date.issued | 2013-04-01 | en_US |
dc.identifier.issn | 0024-3795 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.laa.2012.11.017 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/21369 | - |
dc.description.abstract | We prove that two n-by-n matrices A and B have their rank-k numerical ranges Lambda(k) (A) and Lambda(k) (B) equal to each other for all k, 1 <= k <= left perpendicularn/2right perpendicular + 1, if and only if their Kippenhahn polynomials P-A (x, y, z) equivalent to det(xRe A + yIm A + zI(n)) and p(B) (x, y, z) equivalent to det(xRe B + yIm B + zI(n)) coincide. The main tools for the proof are the Li-Sze characterization of higher-rank numerical ranges, Weyl's perturbation theorem for eigenvalues of Hermitian matrices and Bezout's theorem for the number of common zeros for two homogeneous polynomials. (C) 2012 Elsevier Inc. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Higher-rank numerical range | en_US |
dc.subject | Kippenhahn polynomial | en_US |
dc.title | Higher-rank numerical ranges and Kippenhahn polynomials | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.laa.2012.11.017 | en_US |
dc.identifier.journal | LINEAR ALGEBRA AND ITS APPLICATIONS | en_US |
dc.citation.volume | 438 | en_US |
dc.citation.issue | 7 | en_US |
dc.citation.spage | 3054 | en_US |
dc.citation.epage | 3061 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000315830200013 | - |
dc.citation.woscount | 3 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.