Full metadata record
DC FieldValueLanguage
dc.contributor.authorGau, Hwa-Longen_US
dc.contributor.authorWu, Pei Yuanen_US
dc.date.accessioned2014-12-08T15:29:45Z-
dc.date.available2014-12-08T15:29:45Z-
dc.date.issued2013-04-01en_US
dc.identifier.issn0024-3795en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.laa.2012.11.017en_US
dc.identifier.urihttp://hdl.handle.net/11536/21369-
dc.description.abstractWe prove that two n-by-n matrices A and B have their rank-k numerical ranges Lambda(k) (A) and Lambda(k) (B) equal to each other for all k, 1 <= k <= left perpendicularn/2right perpendicular + 1, if and only if their Kippenhahn polynomials P-A (x, y, z) equivalent to det(xRe A + yIm A + zI(n)) and p(B) (x, y, z) equivalent to det(xRe B + yIm B + zI(n)) coincide. The main tools for the proof are the Li-Sze characterization of higher-rank numerical ranges, Weyl's perturbation theorem for eigenvalues of Hermitian matrices and Bezout's theorem for the number of common zeros for two homogeneous polynomials. (C) 2012 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectHigher-rank numerical rangeen_US
dc.subjectKippenhahn polynomialen_US
dc.titleHigher-rank numerical ranges and Kippenhahn polynomialsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.laa.2012.11.017en_US
dc.identifier.journalLINEAR ALGEBRA AND ITS APPLICATIONSen_US
dc.citation.volume438en_US
dc.citation.issue7en_US
dc.citation.spage3054en_US
dc.citation.epage3061en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000315830200013-
dc.citation.woscount3-
Appears in Collections:Articles


Files in This Item:

  1. 000315830200013.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.