完整後設資料紀錄
DC 欄位語言
dc.contributor.authorGau, Hwa-Longen_US
dc.contributor.authorWu, Pei Yuanen_US
dc.date.accessioned2014-12-08T15:29:45Z-
dc.date.available2014-12-08T15:29:45Z-
dc.date.issued2013-04-01en_US
dc.identifier.issn0024-3795en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.laa.2012.11.017en_US
dc.identifier.urihttp://hdl.handle.net/11536/21369-
dc.description.abstractWe prove that two n-by-n matrices A and B have their rank-k numerical ranges Lambda(k) (A) and Lambda(k) (B) equal to each other for all k, 1 <= k <= left perpendicularn/2right perpendicular + 1, if and only if their Kippenhahn polynomials P-A (x, y, z) equivalent to det(xRe A + yIm A + zI(n)) and p(B) (x, y, z) equivalent to det(xRe B + yIm B + zI(n)) coincide. The main tools for the proof are the Li-Sze characterization of higher-rank numerical ranges, Weyl's perturbation theorem for eigenvalues of Hermitian matrices and Bezout's theorem for the number of common zeros for two homogeneous polynomials. (C) 2012 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectHigher-rank numerical rangeen_US
dc.subjectKippenhahn polynomialen_US
dc.titleHigher-rank numerical ranges and Kippenhahn polynomialsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.laa.2012.11.017en_US
dc.identifier.journalLINEAR ALGEBRA AND ITS APPLICATIONSen_US
dc.citation.volume438en_US
dc.citation.issue7en_US
dc.citation.spage3054en_US
dc.citation.epage3061en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000315830200013-
dc.citation.woscount3-
顯示於類別:期刊論文


文件中的檔案:

  1. 000315830200013.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。