Full metadata record
DC FieldValueLanguage
dc.contributor.authorChuang, JHen_US
dc.contributor.authorLin, CHen_US
dc.contributor.authorHwang, WCen_US
dc.date.accessioned2014-12-08T15:03:37Z-
dc.date.available2014-12-08T15:03:37Z-
dc.date.issued1995en_US
dc.identifier.issn0178-2789en_US
dc.identifier.urihttp://hdl.handle.net/11536/2146-
dc.identifier.urihttp://dx.doi.org/10.1007/BF02434038en_US
dc.description.abstractThe radius blend is a popular surface blending because of its geometric simplicity. A radius blend can be seen as the envelope of a rolling sphere or sweeping circle that centers on a spine curve and touches the surface to be blended along the linkage curves. For a given pair of base surfaces in parametric form, a reference curve, and a radius function of the rolling sphere, we present an exact representation for the variable-radius spine curve and propose a marching procedure. We describe methods that use the derived spine curve and linkage curves to compute a parametric form of the variable-radius sphearical and circular blends.en_US
dc.language.isoen_USen_US
dc.subjectgeometric modelingen_US
dc.subjectblendingen_US
dc.subjectvariable-radius spherical and circular blenden_US
dc.titleVariable-radius blending of parametric surfacesen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/BF02434038en_US
dc.identifier.journalVISUAL COMPUTERen_US
dc.citation.volume11en_US
dc.citation.issue10en_US
dc.citation.spage513en_US
dc.citation.epage525en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:A1995TN51800001-
dc.citation.woscount20-
Appears in Collections:Articles