Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chuang, JH | en_US |
dc.contributor.author | Lin, CH | en_US |
dc.contributor.author | Hwang, WC | en_US |
dc.date.accessioned | 2014-12-08T15:03:37Z | - |
dc.date.available | 2014-12-08T15:03:37Z | - |
dc.date.issued | 1995 | en_US |
dc.identifier.issn | 0178-2789 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/2146 | - |
dc.identifier.uri | http://dx.doi.org/10.1007/BF02434038 | en_US |
dc.description.abstract | The radius blend is a popular surface blending because of its geometric simplicity. A radius blend can be seen as the envelope of a rolling sphere or sweeping circle that centers on a spine curve and touches the surface to be blended along the linkage curves. For a given pair of base surfaces in parametric form, a reference curve, and a radius function of the rolling sphere, we present an exact representation for the variable-radius spine curve and propose a marching procedure. We describe methods that use the derived spine curve and linkage curves to compute a parametric form of the variable-radius sphearical and circular blends. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | geometric modeling | en_US |
dc.subject | blending | en_US |
dc.subject | variable-radius spherical and circular blend | en_US |
dc.title | Variable-radius blending of parametric surfaces | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/BF02434038 | en_US |
dc.identifier.journal | VISUAL COMPUTER | en_US |
dc.citation.volume | 11 | en_US |
dc.citation.issue | 10 | en_US |
dc.citation.spage | 513 | en_US |
dc.citation.epage | 525 | en_US |
dc.contributor.department | 交大名義發表 | zh_TW |
dc.contributor.department | 資訊工程學系 | zh_TW |
dc.contributor.department | National Chiao Tung University | en_US |
dc.contributor.department | Department of Computer Science | en_US |
dc.identifier.wosnumber | WOS:A1995TN51800001 | - |
dc.citation.woscount | 20 | - |
Appears in Collections: | Articles |