Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, Huilanen_US
dc.contributor.authorFu, Hung-Linen_US
dc.contributor.authorLien, Min-Yunen_US
dc.date.accessioned2014-12-08T15:30:13Z-
dc.date.available2014-12-08T15:30:13Z-
dc.date.issued2013-05-01en_US
dc.identifier.issn1382-6905en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s10878-012-9455-1en_US
dc.identifier.urihttp://hdl.handle.net/11536/21647-
dc.description.abstractFor a graph G, let tau(G) be the decycling number of G and c(G) be the number of vertex-disjoint cycles of G. It has been proved that c(G)a parts per thousand currency sign tau(G)a parts per thousand currency sign2c(G) for an outerplanar graph G. An outerplanar graph G is called lower-extremal if tau(G)=c(G) and upper-extremal if tau(G)=2c(G). In this paper, we provide a necessary and sufficient condition for an outerplanar graph being upper-extremal. On the other hand, we find a class of outerplanar graphs none of which is lower-extremal and show that if G has no subdivision of S for all , then G is lower-extremal.en_US
dc.language.isoen_USen_US
dc.subjectDecycling numberen_US
dc.subjectFeedback vertex numberen_US
dc.subjectCycle packing numberen_US
dc.subjectOuterplanar graphen_US
dc.titleThe decycling number of outerplanar graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10878-012-9455-1en_US
dc.identifier.journalJOURNAL OF COMBINATORIAL OPTIMIZATIONen_US
dc.citation.volume25en_US
dc.citation.issue4en_US
dc.citation.spage536en_US
dc.citation.epage542en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000317973700005-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000317973700005.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.