完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Chang, Huilan | en_US |
dc.contributor.author | Fu, Hung-Lin | en_US |
dc.contributor.author | Lien, Min-Yun | en_US |
dc.date.accessioned | 2014-12-08T15:30:13Z | - |
dc.date.available | 2014-12-08T15:30:13Z | - |
dc.date.issued | 2013-05-01 | en_US |
dc.identifier.issn | 1382-6905 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1007/s10878-012-9455-1 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/21647 | - |
dc.description.abstract | For a graph G, let tau(G) be the decycling number of G and c(G) be the number of vertex-disjoint cycles of G. It has been proved that c(G)a parts per thousand currency sign tau(G)a parts per thousand currency sign2c(G) for an outerplanar graph G. An outerplanar graph G is called lower-extremal if tau(G)=c(G) and upper-extremal if tau(G)=2c(G). In this paper, we provide a necessary and sufficient condition for an outerplanar graph being upper-extremal. On the other hand, we find a class of outerplanar graphs none of which is lower-extremal and show that if G has no subdivision of S for all , then G is lower-extremal. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Decycling number | en_US |
dc.subject | Feedback vertex number | en_US |
dc.subject | Cycle packing number | en_US |
dc.subject | Outerplanar graph | en_US |
dc.title | The decycling number of outerplanar graphs | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s10878-012-9455-1 | en_US |
dc.identifier.journal | JOURNAL OF COMBINATORIAL OPTIMIZATION | en_US |
dc.citation.volume | 25 | en_US |
dc.citation.issue | 4 | en_US |
dc.citation.spage | 536 | en_US |
dc.citation.epage | 542 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000317973700005 | - |
dc.citation.woscount | 0 | - |
顯示於類別: | 期刊論文 |